Who are we?

Charlie Wilson

- Energy Group Leader, ECI
- research on innovation, behaviour and policy in the field of energy and climate change mitigation

low.carbonlifestyles

Maureen Agnew

- Applied climatologist, statistical downscaling and upscaling of data
- use of large-scale secondary social science data

Hazel Pettifor

- empirical quantitative social scientist
- research using large-scale social science data

Work funded by Horizon 2020 grants under two projects: NAVIGATE March 2019-Dec 2023, PRISMA 2023 - 2026

Global Environmental Change Volume 82, September 2023, 102739

A framework for measuring and modelling low-carbon lifestyles

Hazel Pettifor 2 🛛 , Maureen Agnew, Charlie Wilson

Show more V

+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.gloenvcha.2023.102739 7

Under a Creative Commons license 7

Get rights and content 7

oben access

A Framework for Measuring and Modelling Low-Carbon Lifestyles

Hazel Pettifor, Maureen Agnew, Charlie Wilson

- This study had three main aims
 - Conceptual To develop and test a universal framework for measuring low carbon lifestyles
 - Empirical To measure heterogeneous lifestyle types across countries and cultures
 - Interpretive To understand behavioural, cognitive and contextual variation across lifestyle types

Why a universal framework for low-carbon lifestyle?

Transition towards sustainable living requires lifestyle change [Lubowiecki-Vikuk et al 2021]

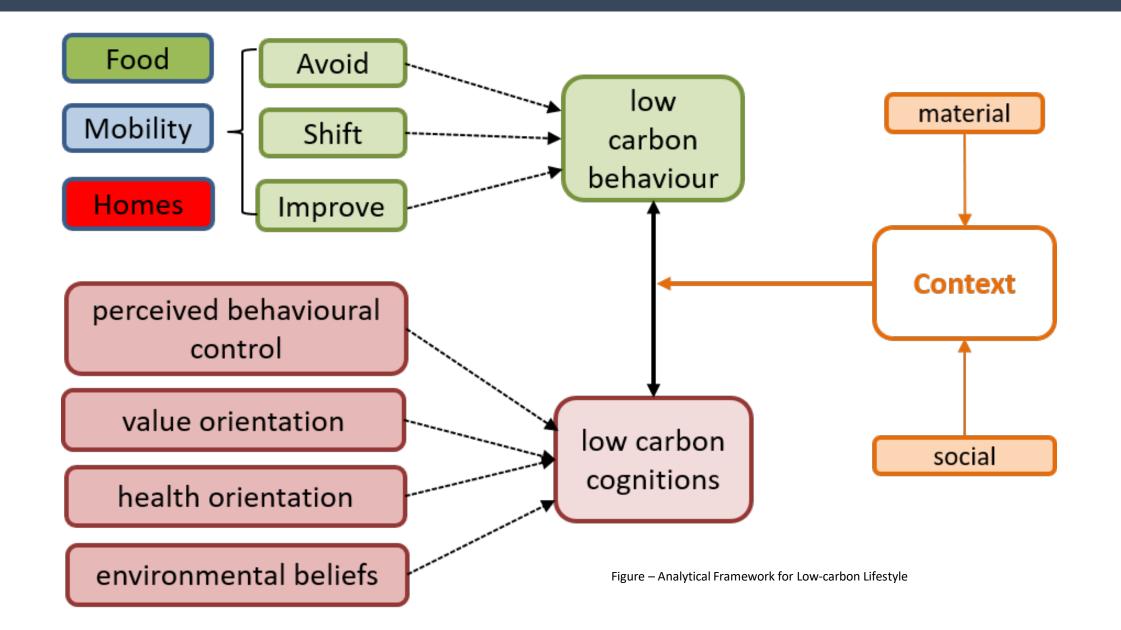
Multiple perspectives, multiple approaches Inconsistencies across global energy models [van den Berg 2019]

Universal frameworks are proprietary There is a need for a generalisable, openaccess, transparent, representative framing of low-carbon lifestyle

Our conceptual approach

Aim : To develop and test a universal framework for measuring low carbon lifestyles Contrasting perspectives contribute worthwhile insights for our framework

WILEY


Received: 1 February 2023	Revised: 25 May 2023	Accepted: 7 June 2023
DOI: 10.1002/wene.490		
OVERVIEW		WIRES DERGY AND ENVRONMENT

Lifestyle, an integrative concept: Cross-disciplinary insights for low-carbon research

Maureen D. Agnew^{1,2} | Hazel Pettifor² | Charlie Wilson²

Key insights from synthesis work

- Lifestyle consists of three interacting elements: cognitions, behaviour and context [Jamal et al 2016; Faiola et al 2019]
- Cognitions drive behaviour [Jain 2019]
- Shaping role of social and material environment [ONS 2017, Sinus 2018]
- Lifestyle is reflexive [Sinus 2018]
- Important synergies between health and low-carbon research [Cengiz and Torlak 2018]

We define lifestyle as 'the interplay between cognitions and behaviour in specific material and social contexts'

Our empirical approach

Aim : To measure heterogeneous lifestyle types across countries and cultures Our empirical approach is quantitative and focuses on large scale social survey data Which is

- Publicly available;
- Nationally representative;
- Randomly sampled (individuals and/or households);
- Valid measures of elements (and constructs) within our framework;
- Variables are measured within the same time frame;

- Four datasets met these criteria:
 - UK Understanding Society (2014-2018) (University of Essex)
 - China Family Panel Survey (2012-2016) (Institute of Social Science)
 - US General Household Survey (2006-2014) (University of Chicago)
 - Australian Household, Income and Labour Dynamics Survey (2012-2019) (University of Melbourne)

Each dataset provides measures of all elements and constructs within our framework

Data preparation results in single valid measures for each construct, using same scaling, reducing large sample sizes ready for analysis

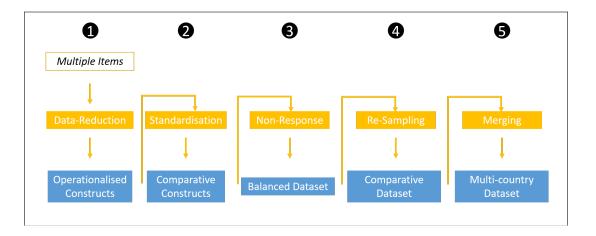


Table – Representation of Analytical Framework

	Valid items (N)			
Construct	UK	China	US	Australia
Low-carbon Cognitions				
perceived behavioural	12	2	2	5
control				
value orientation	10	25	3	13
health orientation	10	11	8	13
environmental beliefs	15	1	5	4
total (n)	42	39	18	35
Low-carbon Behaviour				
mobility	5	9	1	2
food	7	6	3	5
homes	7	1	1	1
total (n)	19	16	4	8
Material Context				
affordability and wealth	2	2	2	2
living conditions	10	4	3	5
access to infrastructure	11	11	3	7
Social Context				
family and educational	5	5	5	5
capital				
social connectedness	1	5	1	1
Total (n)	29	27	14	20
Total (N)	90	82	36	63
Sample size	12,000	16,000	900	8,000
Reduced sample size	5,000	5,000	900	5,000

To preserve within country heterogeneity each dataset is prepared and analysed separately

Primary analytical approach identifies the clusters

hierarchical cluster analysis

 $N_{Cluster}$ = Low-carbon behaviour (mobility + homes + food) + low-carbon cognitions (perceived behavioural control + value orientation + health orientation + environmental beliefs)

Secondary analytical approach characterises the lifestyle types

OLS and multinomial logistic regression other descriptive statistics to characterise the four lifestyle types

We apply ex-post the A-S-I framework

- Avoid behaviours (using car less) (avoid foods) (reduce heating)
- Shift behaviours (from car to public transport) (change diet) (shift to renewable electricity)
- Improve behaviours (from conventional to EV) (reduce food waste) (home generation)

	Mobility	Food	Homes
	Reduce / avoid use of	Avoid unsustainable	Reduce home energy
	carbon intensive	goods	consumption
Avoid	modes of transport	Avoid excess packaging	Reduce heating
Avolu	Fewer flights; Drive less	Avoid products for	controls; use less
	(UK, CHN, USA, AUS)	environmental reasons	lighting
		(UK, USA)	(UK, USA, AUS)
	Shift from car to public	Shift to a more	Shift to lower carbon
	transport / cycling /	sustainable healthy	source of fuel
	walking	diet	cook using low-carbon
Shift	Shift to public	Low meat diet	fuel (electricity, biogas
	transport from car	(UK, CHN, USA, AUS)	(CHN))
	Walk short journeys		
	(UK, CHN, AUS)		
	Fuel-efficient vehicles	Efficient use of food	Micro-generation
	/ Electric vehicles	products / reduce	Home has solar panels
	Car share; Own EV;	waste	for water; heating;
Improve	Own E-bike	Recycled packaging;	wind turbine
	(UK, CHN)	Take owns bags	(UK)
		shopping (UK, USA)	

Figure – Categorisation of Behaviours across the A-S-I Framework

Based on the A-S-I framework (evaluated in Creutzig et al. (2022) and van den Berg et al. (2019)

Results

Aim: To understand behavioural, cognitive and contextual variation across lifestyle types

Key findings 1: Four lifestyle types are clearly distinguished by their low-carbon cognitions, behaviours and contexts

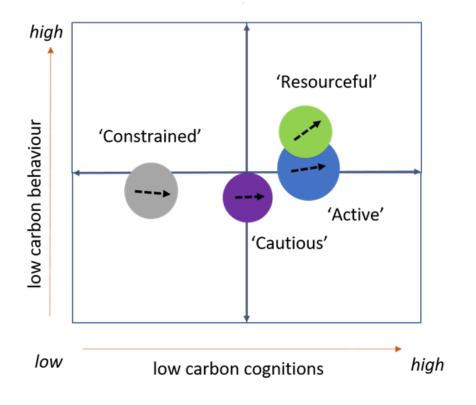
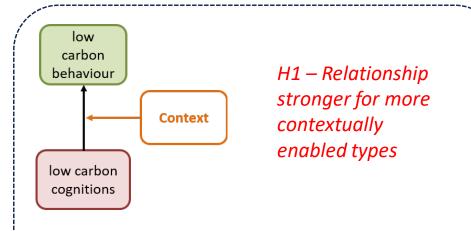


Table – Cognitive, Behavioural and Contextual Heterogeneity Across Lifestyle Types

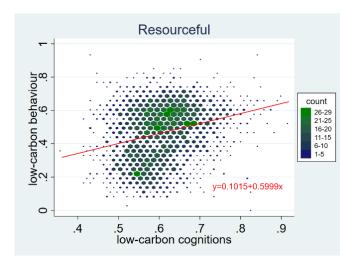

	Resourcefu	l Active	Constrained	Cautious
Sample size (n) [%]	3,592 [23%] 4,795 [30%]	4,259 [27%]	3,254 [20%]
Element 1				
Low-carbon Cognitions				
Constructs				
PBC				
Value orientation				
Health orientation				
Environmental beliefs				
Element 2				
Low-carbon Behaviour				
Constructs				
Avoid Mobility				
Avoid Food				
Avoid Homes				
Shift Mobility				
Shift Food				
Shift Homes				
Improve Mobility				
Improve Food				
Improve Homes				
Element 3				
Context				
Income (US\$)				
Educated (% high education)				
Technology Savvy (% high)				
Urban environment (%)				
Supportive social networks (%)				
Smaller household				
Younger				

Key findings 2: Each lifestyle type is associated with different identifiers that vary across countries

We find small differences in the profiling of lifestyle types which emphasise differences in social and material contexts between countries

- There are differences in the size of groups across countries
 - In UK 'Constrained' types are the largest group
 - In China and Australia 'Active' types are the largest
 - In USA, 'Cautious' types are the largest groups
- The digital divide [Liu et al 2017]
 - All countries 'Resourceful' types are most 'technology savvy', 'Constrained' types the least
- Societal Structural divide [Delhey et al 2018]
 - In China all lifestyle types have strong social networks. In USA these are weak for all types.
- Economic divide and reforms [Huang et al 2021].
 - China has transitioned from socialist welfare housing system to one countries highest proportion of home-owners

Key findings 3: Low-carbon cognitions direct low-carbon behaviour, if context is 'enabling'



Low Carbon Behaviour = Low Carbon Cognitions

'Resourceful' and 'Active' types are contextually 'enabled'. For them low-carbon behaviour is more strongly directed by lowcarbon cognitions.

'Constrained' types faces many barriers to engagement

'Cautious' types are 'enabled' but 'passive'

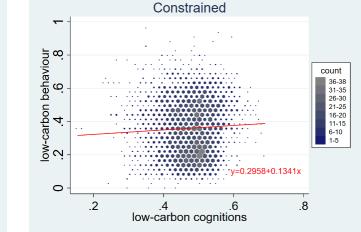


Figure – Scatterplot, Resourceful types with line of best fit

Figure – Scatterplot, Constrained types with line of best fit

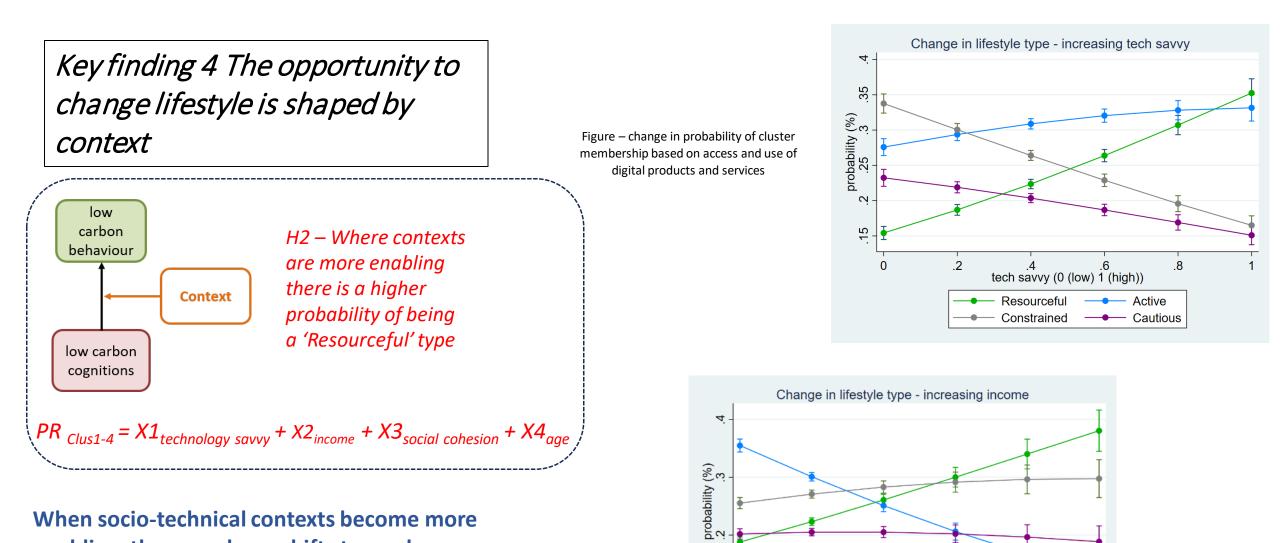



Figure – Bivariate association between cognitions and behaviour, four lifestyle types

.2

income (0 (low) 1 (high))

Resourceful

Constrained

0

Figure – change in

probability of cluster membership based on

income

.8

Active

— Cautious

enabling, there are large shifts towards 'Resourceful' and 'Active' lifestyle types

Most noticeable when more people have access to digital skills and related technology.

Discussion and Conclusion

A generalisable lifestyle framework is an important tool for understanding lifestyle contributions to climate change mitigation.

- Country representation, some regional representation
- Can be extrapolated to further regions using other global datasets

Transition towards low-carbon living involves an interplay between lifestyle elements

- Cognitions to strengthen pathways
- Behaviour to widen experiences across domains and behaviours (enhance consistency)
- Context to enable people to act on their cognitions

Inequality present major barriers to large-scale transitions to lowcarbon future

- Address digital divide [Cullen 2001] (infrastructure, skills, access), links to social cohesion)
- Retain aspects of culture and tradition that can enrich perspectives in Global North

Insights for Government, and Modelling Communities

- Policy for specific archetypes to align diverse motivations with differing contexts.
- Simulate contribution of lifestyle change to global climate change mitigation

ENVIRONMENTAL RESEARCH LETTERS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Endogenous Simulation of Low-Carbon Lifestyle Change in Global Climate Mitigation Pathways

Hazel Pettifor¹ (D), Alessio Mastrucci² (D), Charlie Wilson¹ (D), Bas van Ruijven³ (D), Maureen Agnew¹ and Thomax Le Gallic⁴

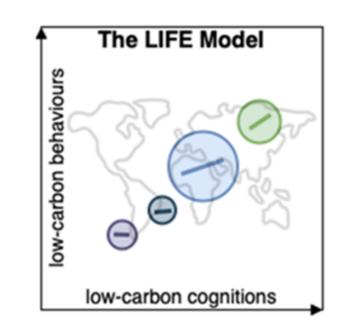
Accepted Manuscript online 5 September 2023 • © 2023 The Author(s). Published by IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1748-9326/acf6d6

Endogenous Simulation of Low-Carbon Lifestyle Change in Global Climate Mitigation Pathways

Hazel Pettifor, Alessio Mastrucci, Charlie Wilson, Maureen Agnew, et al


- The main aim of this study was to demonstrate an approach to modelling lowcarbon lifestyle and lifestyle change in global energy system models
- .. that was empirically based

The LIFE Model

An empirically based, static model of low-carbon lifestyle

The Problem

- Lifestyle change is an integral and inevitable feature of a low-carbon future
- Integrated Assessment Models (IAMs) used to characterise mitigation pathways have a simplified representation of lifestyle that focuses on the impact
- To adequately represent lifestyles, they need to also capture the mechanisms of lifestyle change
- This is the aim of the LIFE model

Resourceful highly engaged

Active goal driven and healthy

Constrained contextual challenges

Cautious the means not the motivation

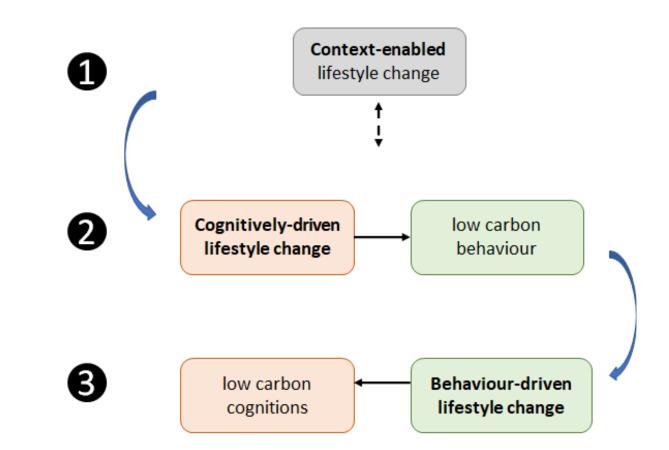
The LIFE model characterises four lifestyle types across cognitions, behaviour and context

Behaviours are physical (observable) activities, actions, improvements

Context is material or social

Mechanisms of lifestyle change

1. Context-enabled as incomes rise, or new skills are

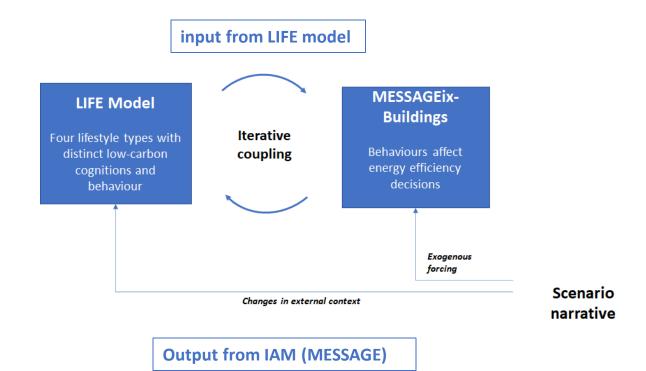

2. Cognitively-driven

learnt

behaviour changes as values, beliefs and intentions change

3. Behaviour-driven

cognitions change with as people become familiar and learn about behaviours that have changed

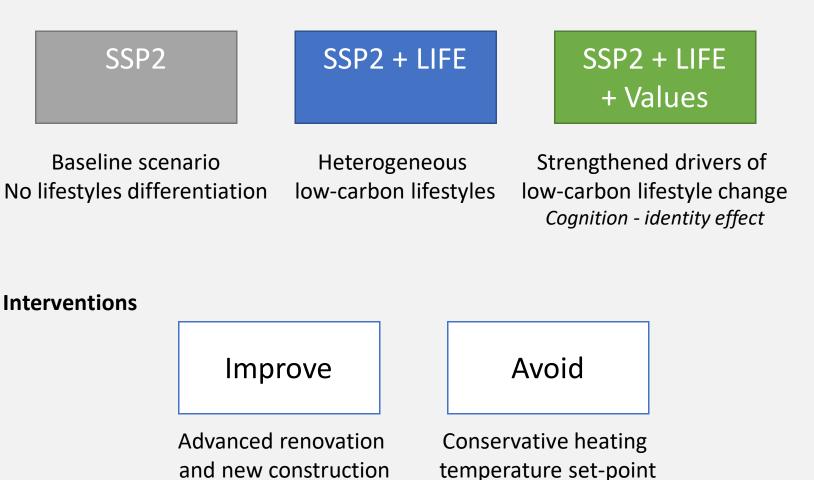


These are interconnected processes

The LIFE Model

Enables dynamic simulation of lifestyle change

Demonstration approach in MESSAGEix-Buildings


Demonstration: Global residential space heating

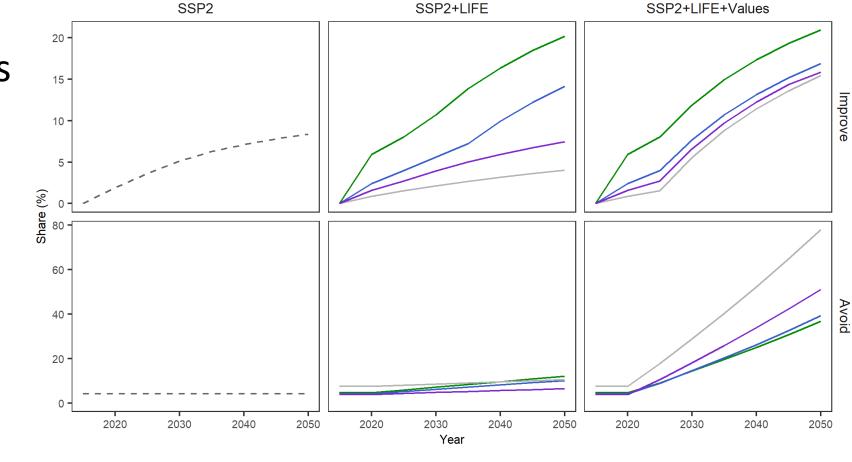
Coupled framework:

• LIFE

• MESSAGEix-Buildings

Scenarios (SSP2 = business as usual)

Results Low-carbon Activities


• SSP2 + LIFE

Heterogeneity across the lifestyle types

Behaviour gap 'engaged' and 'dis-engaged' types

SSP2+LIFE+Values

Strengthened cognitions closes this gap

Lifestyle cluster - Resourceful - Active - Constrained - Cautious - Reference

Conclusion

Coupling the LIFE model and global IAMs:

- Simulate dynamic low-carbon lifestyle change
- Widen the potential 'tool-kit' of IAMs towards modelling social processes and the mechanisms of socially-oriented change